

# Quantifying marine biodiversity using environmental DNA

Michael Knapp<sup>1</sup>, Gert-Jan Jeunen<sup>1</sup>, Chris Hepburn<sup>1</sup>, Mike Bunce<sup>2</sup> and Neil Gemmell<sup>1</sup>

1: University of Otago, Dunedin, New Zealand

2: Curtin University, Perth, Australia













#### National SCIENCE Challenges

SUSTAINABLE SEAS

Ko ngā moana whakauka

# Background: Marine Biodiversity monitoring today



By Peter Southwood https://commons.wikimedia.org/w/index.php?curid=25 270269





By Warichrb29 https://commons.wikimedia.org/ w/index.php?curid=51818725

# Background: Marine Biodiversity monitoring today

- Wide variety of different approaches, for example (from MAF Milford Sound survey 2008; Inglis et al.)
- Quadrant scraping
- Core samples
- Surface dredging
- Beach seine netting
- Crab and shrimp traps
- Beach wrack survey.....





SUSTAINABLE SEAS Ko ngā moana whakauka

# Background: Marine Biodiversity monitoring today

- Problems: Gold standard of biodiversity screening BUT:
- Very time intensive
- Requires lots of expert time to identify species and analyse data
- Only suitable for narrowly defined areas. NZ wide application cost prohibitive



# Our challenge

 Develop a quick and cost efficient strategy for marine biodiversity monitoring suitable to inform community based management of marine resources across NZ.





## Aquatic environmental DNA (eDNA)

 Definition: DNA left behind by organisms in the environment through the shedding of skin cells, mucus, gametes, decomposition,...









# Environmental DNA: Quantifying marine biodiversity from DNA present in sea water samples



Sample collection: two liters of sea water





#### Otago harbour: Method

# Status of project

development (completed)

#### East Otago Taiāpure:

Refinement of analyses pipeline in actual field experiment (two of three sample trips completed, analyses pending)



#### Milford Sound:

Transfer approach to radically different environment. Field test against conventional sampling (November 2017)





SUSTAINABLE

SEAS

Ko ngā moana

whakauka

National

SCIENCE

Challenges

## eDNA detects habitat specific communities

#### Species we detect with eDNA







Mudflats



## Rocky shore associated species

#### Maori chief

- Juveniles in rock pools
- Adults found deep rocky reefs



#### Thornfish

- Endemic to New Zealand
- Found in rock pools







## Rocky shore associated species

#### New Zealand half crab

- Native to New Zealand
- Most abundant crab species under boulders



#### Common rock crab

- Endemic to New Zealand
- Found under stones left dry by the tide









## Muddy beach associated species

#### Tunneling mud crab

Most commonly found within harbours at

mudflats



#### Stalk-eyed mud crab

- Endemic to New Zealand
- Found within harbours at mudflats







## Species with a DNA signal at both sites

#### New Zealand paddle crab

- Swimming-crab
- Digs itself into sand



#### Cryptosula

- Encrusting bryozoan
- Grows on hard surface (rocks, seaweed,...)



Coastal euphausiid



www.blog.tepapa.govt.nz

The Mole





www.exoticsguide.org

Mudflats



Ko ngā moana whakauka

## Perspectives

- Develop eDNA laboratory and computational pipeline to a standard suitable for commercial service providers such as ESR → affordable marine biodiversity monitoring for communities.
- Establish database of community eDNA monitoring projects around the country → knowledge transfer between communities; coordination of management efforts.
- New Zealand marine biodiversity atlas
- Use newly developed pipeline to contribute to other Sustainable Seas projects, such as for example project 4.1.1 "ecosystem connectivity".



# Acknowledgements

- Hamish Spencer
- Miles Lamare
- Michael Stat
- Nicky McHugh
- Sean Hesseltine
- The TREND lab at Curtin University
- National Science Challenge Sustainable Seas

