
Science of the Total Environment 842 (2022) 156877

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
The impact of cumulative stressor effects on uncertainty and ecological risk
Vera Rullens a,⁎, Fabrice Stephenson a,b, Judi E. Hewitt b,c, Dana E. Clark d, Conrad A. Pilditch a,
Simon F. Thrush e, Joanne I. Ellis f
a School of Science, University of Waikato, Hamilton, New Zealand
b National Institute for Water and Atmospheric research, Hamilton, New Zealand
c Department of Statistics, University of Auckland, Auckland, New Zealand
d Cawthron Institute, Nelson, New Zealand
e Institute of Marine Science, University of Auckland, Auckland, New Zealand
f School of Science, University of Waikato, Tauranga, New Zealand
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Marine environments experience multiple
stressors that have cumulative effects.

• Transparency on the risks and uncer-
tainties from cumulative effects are essen-
tial.

• Inmodels for estuarine invertebrates, non-
additive stressor effects dominated.

• 3D-plots provide insights on complex
stressor interactions and gradients of
change.

• Steep gradients of change and high uncer-
tainty invoke precautionary management.
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 To enable environmental management actions to be more effectively prioritized, cumulative effects between multiple
stressors need to be accounted for in risk-assessment frameworks. Ecological risk and uncertainty are generally high
when multiple stressors occur. In the face of high uncertainty, transparent communication is essential to inform
decision-making. The impact of stressor interactions on risk and uncertainty was assessed using generalized linear
models for additive andmultiplicative effect of six anthropogenic stressors on the abundance of estuarine macrofauna
across New Zealand. Models that accounted for multiplicative stressor interactions demonstrated that non-additive ef-
fects dominated, had increased explanatory power (6 to 73% relative increase between models), and thereby reduced
the risk of unexpected ecological responses to stress. Secondly, 3D-plots provide important insights in the direction,
magnitude and gradients of change, and aid transparency and communication of complex stressor effects. Notably,
small changes in a stressor can cause a disproportionally steep gradient of change for a synergistic effect where the tol-
erance to stressors are lost, and would invoke precautionarymanagement. 3D-plots were able to clearly identify direc-
tional shifts where the nature of the interaction changed from antagonistic to synergistic along increasing stressor
gradients. For example, increased nitrogen load and exposure caused a shift from positive to negative effect on the
abundance of a deposit-feeding polychaete (Magelona). Assessments relying on model coefficient estimates, which
provide one effect term, could not capture the complexities observed in 3D-plots and are at risk of mis-identifying
interaction types. Finally, visualising model uncertainty demonstrated that although error terms were higher for
multiplicative models, they better captured the uncertainty caused by data availability. Together, the steep gradients
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of change identified in 3D-plots and the higher uncertainty in model predictions in multiplicative models urges more
conservative limits to be set for management that account for risk and uncertainty in multiple stressor effects.
1. Introduction

Although marine and coastal ecosystems are recognised as ecologically
and culturally significant, they are also among those most heavily im-
pacted, diminishing their health, functioning, and the services they provide
to people (MEA, 2005; Halpern et al., 2007; He and Silliman, 2019; Gissi
et al., 2021). Estuarine and coastal environments are situated at the inter-
face between land and sea and experience unprecedented anthropogenic
pressures originating from land (e.g. eutrophication, sedimentation, or pol-
lution), activities at sea (e.g. fishing, dredging) and global climate change
(Halpern et al., 2008; Robins et al., 2016; Cabral et al., 2019).When ecosys-
tems experience multiple stressors, the response may not be characterised
as a simple additive effect. Rather, interactions between stressors are regu-
larly observed and can have devastating consequences. The cumulative ef-
fects of multiple stressors remains a key research area in marine ecosystem
ecology (Breitburg et al., 1998; Borja et al., 2020) and can alter the way
marine and coastal environments are managed (Stelzenmüller et al.,
2018).Much of the concern overmultiple stressors stems from the potential
for synergistic or antagonistic effects, where their combined effect is either
greater or smaller (respectively) than what is expected additively (Folt
et al., 1999; Crain et al., 2008). This implies that synergistic effects are of
highest priority in ecological risk assessments, where effectivemanagement
actions reducing one stressor may provide additional benefits by simulta-
neously reducing the synergistic effect (Falkenberg et al., 2013; Brown
et al., 2014; Mach et al., 2017). For antagonisms on the other hand,
management actions that reduce one stressor may be ineffective.

Cumulative effect assessments have been conducted using a variety of
methods to gain insights into the nature of interactive effects betweenmul-
tiple stressors across different ecological scales (individual to ecosystem)
(Hodgson and Halpern, 2019). Empirical findings on cumulative stressor
impacts are predominantly derived from laboratory studies focussing on
single species responses and a narrow range of few (two or three) easily
amenable stressors for which synergistic effects dominate (Crain et al.,
2008). Although these studies provide valuable insights and can identify
cause-effect relationships, their small-scale application can render results
to be context specific. The dynamics in real ecosystems, which experience
multiple stressors of different duration, timing, magnitude, and spatial ex-
tent, are much more complex (Gunderson et al., 2016; Gladstone-
Gallagher et al., 2019b; Jackson et al., 2021). These dynamics are key in
deciphering the real-world response of a system to stress. To this end, a va-
riety of modelling approaches exist to determine the potential impact of
multiple stressors by analysing responses across wide spatial and temporal
gradients of environmental stressors (Hodgson and Halpern, 2019). Model-
ling studies that explicitly consider non-additive effects and determine the
nature of stressor interactions remain limited but are critically important
to progress our understanding and reduce the risk of unanticipated ecolog-
ical responses.

Regression models offer a way of quantifying stressor interactions and
have been used in estuarine environments to determine cumulative stressor
impacts on benthic communities as indicators of ecosystem health (O’Brien
et al., 2016). Notably, changes in dominant species and community compo-
sition provide insights into the systems response to stress and identify prior-
ity stressor interactions (e.g. Thrush et al., 2008b; Jennerjahn andMitchell,
2013; Ellis et al., 2017a; Clark et al., 2021). Regression models, including
(linear) regression, quantile regression or regression trees, determine cu-
mulative effects through correlation between stressors and the response
of interest (e.g. species abundance) and can encompass real-world variabil-
ity and complexity in stressor gradients. Although regression trees (e.g.
Random Forest and Boosted Regression Trees) are increasingly used in
ecological studies (Elith et al., 2008), including those on multiple stressors
effects (e.g. Hewitt et al., 2016; Kotta et al., 2017; Ceccarelli et al., 2020),
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they rarely distinguish among interaction types (Teichert et al., 2016).Mul-
tiple linear regression on the other hand can identify stressor interaction
types from the direction and magnitude of estimated model coefficients
(e.g. Thrush et al., 2008b; Feld et al., 2016; Ellis et al., 2017a; Ellis et al.,
2019; Birk et al., 2020). Although this provides a way to identify additive,
antagonistic, or synergistic effects, the form of stressor interactions along
increasing gradients of stress has only recently been explored. Visualising
these effects across gradients of stress may aid better interpretation and
communication of multiplicative effects (Feld et al., 2016).

One area that receives little attention in any of the aforementioned
methods, is the risk and uncertainty associated with cumulative stressor
impacts on species or ecosystems. Stressors that threaten the environment
(i.e. negatively impact the state of the environment) need to be managed
to mitigate their effects. Environmental management and decision making
often rely on risk assessments to identify the probability and potential
consequences of an event and decide if this risk is acceptable or needs to
be mitigated (ISO, 2009). Risk can arise when there is uncertainty about
the consequences of a threat. In environmental stressor research, the effects
of two stressors can greatly deviate from the expected outcome derived for
single stressors or their additive effects. Uncertainty in the response of a sys-
tem to stress, and potentially unknown synergistic or antagonistic effects,
therefore increases risk. In marine environments there are a large number
of stressors and new stressor interactions are still being uncovered (Gissi
et al., 2021). Until more stressor combinations and the mechanisms behind
them are understood, there is a risk of unanticipated consequences of
stressors on the environment, which needs to be communicated from scien-
tists to decisionmakers and other stakeholders. Ecologists can contribute to
a reduction of risk by researching the mechanisms behind cumulative
stressor effects, creating models that more accurately predict a systems
response to multiple stressors, and by transparently communicating about
the uncertainty from the model assessment (Marcot, 2020).

Although transparency about model uncertainty is critically important
for management and decision making, few studies provide an assessment
of the uncertainty associated with model outputs in cumulative effect anal-
yses (Stelzenmüller et al., 2018). Model uncertainty is multi-dimensional,
with factors pertaining to the nature, level, and location of uncertainty
(Walker et al., 2003). The nature of uncertainty can be epistemic (i.e. in-
complete knowledge) or ontological (i.e. natural variability) and the level
can range from complete certainty to deeply uncertain (Walker et al.,
2003; Marcot, 2020). The location of model uncertainty refers to uncer-
tainty originating from, among others, technical aspects, model inputs,
data, and parameter calibration (Walker et al., 2003). Three aspects of
risk and uncertainty are important when considering cumulative effects.
First, studies focussed on stressor interactions, as opposed to single stressors
or additive effects, reduce the risk of missing important interactions that
alter expected ecological responses, and thereby address a deeper level of
epistemic uncertainty in the conceptual structure of the model. Second,
the uncertainty associated with model outcomes often accumulates from
different aspects and can be expressed as an overall prediction error or
other measures of inaccuracy. For example, Stock and Micheli (2016) stud-
ied uncertainty from model assumptions and data quality in cumulative
impact mapping and found aggregated uncertainty from different origins.
Third, data availability and quality (e.g. accuracy and consistency in data
collection, sampling biases, spatial and temporal resolution; Walker et al.,
2003) are important drivers of uncertainty in ecological models (Halpern
and Fujita, 2013; Rueda-Cediel et al., 2015; Jenkins and Quintana-
Ascencio, 2020).

In this study, we aim to determine how the cumulative effects of multi-
ple stressors affect uncertainty and ecological risks by studying the effect of
multiple stressors on species abundance in models with and without
stressor interactions. We show how (model) uncertainty changes when
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interactive effects between stressors are included compared to additive
effects alone, and link this back to data availability. Linear regression
models were developed to assess the impact of local and climate stressors
on the abundance of estuarinemacroinvertebrates as indicators of estuarine
health (O’Brien et al., 2016), using datasets from surveys and monitoring
programs conducted across New Zealand. We hypothesise that the inclu-
sion of multiplicative interactive effects will increase model predictive
ability, compared to models with only additive effects. Data availability
covering the combined stressor space was expected to be a key limitation
for the inclusion of interactive effects and was therefore analysed as a
driver of uncertainty. Finally, we visualised interactive effects based on 3-
dimensional plots of important stressor pairs. The need to better incorpo-
rate and transparently communicate risk and uncertainty from multiple
stressor effects is universal for risk assessments of any ecosystem, and the
approach described in this study is applicable beyond the stressors, species,
and estuarine environment considered in this example.

2. Methods

2.1. Study area

Data were compiled from the macrofauna database from the National
Institute ofWater and Atmospheric research (NIWA) that included environ-
mental surveys and large-scale experiments conducted in New Zealand
estuaries (Thrush et al., 2003; Thrush et al., 2008a; Hewitt et al., 2010;
Lohrer et al., 2012; de Juan et al., 2013; Hailes et al., 2015; Ellis et al.,
2017b; Kraan et al., 2020; Drylie, 2021; Thrush et al., 2021) and the
National Estuary Dataset (NED) that compiled additional datasets from
regional government authorities (Berthelsen et al., 2020a; Berthelsen
et al., 2020b). Combined, the datasets covered 770 independent sites across
45 estuaries sampled between 2000 and 2019, in austral spring to autumn
(October to May). Sites spanned a total of 12° latitude across New Zealand,
although datasets were skewed to the northern North-Island (Fig. S1). For
sites sampled over multiple events, data from the most recent event were
selected to ensure temporal independence; to ensure spatial independence
sites within estuaries had to be >25 m apart (Douglas et al., in review).

2.2. Macrofauna data

At each site, infauna samples were collected to assess the macrofauna
community composition. Samples were taken using a 13 cm diameter
core to 15 cm depth, sieved to 500 μm, and all individuals were identified
by taxonomic experts to the lowest practicable taxonomic level. Over 500
species or taxawere identified in the datasets, and for further analysis a sub-
set of 8 species was selected (Table 1). Species were selected because they
were identified to a consistent taxonomic resolution across datasets with
different prevalence and abundances and covered a variety of taxonomic
and functional groups commonly occurring in New Zealand's estuarine
benthic communities (Table 1) (Rodil et al., 2013; Greenfield et al.,
2016). The data were checked for consistency and a few sites were omitted
Table 1
Taxonomic information on the selected species for modelling, including taxonomic and f
behaviour, living position, movement ability, living structure created, and/or body size (
core−1) averaged over three replicate cores are given.

Species Taxa Functional group

Austrovenus stutchburyi Bivalvia Calcified, suspension-feeding, top 2 cm
Macomona liliana Bivalvia Calcified, deposit-feeding, deep, limite
Heteromastus filiformis Polychaeta Soft-bodied, deposit-feeding, below sur
Scoloplos cylindrifer Polychaeta Soft-bodied, deposit-feeding, below sur
Aonides sp. Polychaeta Soft-bodied, deposit-feeding, below sur
Magelona dakini Polychaeta Soft-bodied, deposit-feeding, below sur
Oligochaeta Clitella Soft-bodied, predator/scavenger, top 2
Austrohelice crassa Malacostraca Rigid, predator/scavenger, below and o
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if unclear (e.g. forMagelona dakini 72 sites were dropped from the analyses
due to taxonomic discrepancies). At each site, a variable number of repli-
cate cores were used to sample the macrofaunal community (ranging
from n = 3–12) depending on the study/monitoring dataset. To ensure
macrofaunal community data were comparable between sites (and
datasets), three replicate cores were averaged (for sites where n was >3
these were randomly selected) resulting in a single estimate of macrofauna
community data for each site (which was paired to a single measure of
environmental data). Species prevalence in the datasets showed lowest
prevalence for the crab Austrohelice crassa (11 %), and highest prevalence
for both bivalves Austrovenus stutchburyi and Macomona liliana (73 and
72 % respectively) (Table 1) across sites. Some of the most abundant taxa
were polychaetes and oligochaetes with over 200 individuals per core
(Table 1).

2.3. Environmental stressor data

The effect of six environmental variableswere assessed as drivers ofmac-
rofauna abundance. These variables can act as stressors when human activ-
ities cause them to exceed their natural range of variability (Sanderson et al.,
2002; Halpern et al., 2007). Three local, land-derived stressors, including
sediment mud content (Mud), organic matter content in sediments (OM),
Nitrogen load (N-load), and three climate stressors, namely maximum
sea surface temperature (maxSST), a climate index (Southern Oscillation
Index - SOI), and wind-wave exposure (Exposure) were included in this
study. Whilst other stressors impact estuaries around the world (notably
pollutants), the choice of stressors in this study was driven by relevance to
the case study area and data availability from monitoring programs. Mud
content was used as a proxy for sediment run-off into estuaries, which can
cause smothering of benthic communities (Thrush et al., 2004). For most
species, high mud content acts as a stressor (e.g. Thrush et al., 2004;
Anderson, 2008; Robertson et al., 2015), with only few species preferring
muddy conditions (e.g. the ‘mud crab’ Austrohelice crassa). Similarly, OM
and N-load are indicators of eutrophication in estuaries (Pinckney et al.,
2001), with high OM and N-load were considered to be stressors (Savage
et al., 2002). The three climate stressors reflected the impact of climate
change related variables. MaxSST, the highest temperature experienced
during the month of sampling, reflects stress from global warming. The
wind-wave exposure of sampling sites was used as a proxy for vulnerability
from increased severe weather events, like hurricanes, that occur with cli-
mate change. SOI reflects a wider shift in climatic patterns in the southern
Pacific (El-Nino Southern Oscillation) and has a bi-directional effect as a
stressor under both high (La-Nina) and low (El-Nino) conditions.

For the local stressors, Mud and OM content were determined concur-
rently with macrofauna sampling during the environmental surveys, by
collecting samples from the top 2 cm of the sediment. Mud, as the fraction
of sediment with a grain size <63 μm, was determined using either wet
sieving or laser diffraction analysis. For the sampled sites, Mud covered a
wide spectrum of conditions, varying between 0 and 99%mud, skewed to-
wards lowmud content (Table 2). OMwas analysed by drying a subsample
unctional groups. Functional groups provide information on body hardness, feeding
Greenfield et al., 2016). The species prevalence (Prev, %) and abundance range (ind

Prevalence
(%)

Abundance
(ind core−1)

, freely mobile, large 73 0–129
d mobility, large 72 0–35
face, limited mobility, small 69 0–202
face, freely mobile, medium 31 0–56
face, limited mobility, small 46 0–439
face, limited mobility, small 25 0–30
cm, limited mobility, small 41 0–241
n surface, freely mobile, burrow former, large 11 0–14



Table 2
Overview of environmental stressors used in modelling species abundance re-
sponses, including the spatial resolution and temporal correspondence with the
macrofauna sampling and data type. OM: organic matter, N-load: nitrogen load,
SOI: Southern Oscillation Index, maxSST: maximum sea surface temperature (SST).

Mud OM N-load SOI maxSST Exposure

(%) (%) (TN/year) (°C)

Minimum 0.0 0.43 0.0 −1.60 15.6 0.0
Mean 17.6 2.30 3.0 0.48 18.6 30.2
Median 11.5 1.95 1.0 0.77 18.7 18.7
Maximum 99.9 10.0 151.6 2.17 23.1 112.5
Spatial Site Site Site National Estuary Site
Temporal Concurrent Concurrent Year 3-month

lag
Month Steady

state
Data type Measured Measured Modelled Modelled Modelled Modelled
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of sediment to constant weight andmeasured as the loss of mass on ignition
(LOI), ranging from 0.4 to 10.0 % (Table 2). Whilst Mud and OMwere col-
lected in situ, proxies were obtained for the other stressors from models,
which were integrative over space/time (Table 2). N-load was calculated
for each site based on modelled mean annual in-stream total nitrogen
loads derived from the Catchment Land Use for Environmental Sustainabil-
ity (CLUES) model (version 10.3; Semadeni-Davies et al., 2016, Semadeni-
Davies et al., 2020). The in-stream loads are the sum of the upstream total
nitrogen loadings (t/year) for the terminal reach of a stream. For each site,
the mean annual in-stream total nitrogen loads for terminal reaches
discharging into the estuary within 1 km of the sampling site were summed
to calculate a cumulative nitrogen load for the site. N-load values were
square root transformed to account for few sites with high N-load that
exerted undue influence on the analysis (Zuur et al., 2010).

Modelled daily SST data were obtained from the JPL MUR MEaSUREs
Project (Nasa/Jpl, 2015; Chin et al., 2017). MaxSST for the month and
year of sampling were obtained from a location near the seaward entrance
of each estuary, resulting in one value for all sites within an estuary at a
given sampling event. SST data were not available from this source prior
to 2002, therefore the median monthly value of maxSST from 2003 to
2020 were used for sites sampled prior to 2002 (n = 240). In the study
area, the range of SST during the month of sampling was between 15.6
and 23.1 °C, capturing both seasonal and latitudinal variability in maxSST.
SOI provides a measure of the strength of the El-Nino Southern Oscillation
(ENSO), which drives climatic conditions in the southern pacific in a 2 to 7-
year cycle. Prolonged periods (>3 months) of SOI below −1 or above 1
characterise El-Niño and La-Niña events respectively. Therefore, SOI was
calculated as the 3-month running average prior to the month and year of
sampling at each site. Wind-wave exposure was calculated for each site fol-
lowing a similar approach to that used by Burrows et al. (2008) and Clark
et al. (2021). Fetch (distance to land, m) was calculated for each site in
20° intervals, with a maximum distance of 20 km if not intersecting with
land. Three years of wind direction and speed data (2010−2013) were
acquired from the nearest weather station from NIWA CliFlo database
(cliflo.niwa.co.nz) and binned into 20° intervals to determine predominant
wind direction and speed at sites. Each fetch measurement was then multi-
plied by the total number of days that the predominant wind was from that
direction and the average wind speed (surface wind at 9 am, m s−1) for
those days. Wind-wave exposure values per bin were summed and divided
by 100,000 to create an exposure index ranging from 0 to 112.5 (Table 2),
with high values reflecting exposed sites experiencing high wind/wave
energy.

2.4. Modelling species responses to environmental stressors

Generalized linear models (GLM) were used to study the response of
species abundance to environmental stressors. For each species, GLMs
were created with additive effects between stressors only (see Eq. (1)),
hereafter referred to as ‘additive models’ and those with multiplicative
4

interaction effects between stressors (see Eq. (2)), hereafter referred to as
‘multiplicative models’.

y ¼ aþ b1x1 þ b2x2 (1)

y ¼ aþ b1x1 þ b2x2 þ b3x1x2 (2)

where y represents the response variable (here species abundance), a the
intercept, and bi the slope coefficient for independent variables xi (here
stressors or their interaction). All stressors were rescaled from 0 to 1 to en-
able comparison between stressor effects on log-transformed abundance,
following:

xscaled ¼ x � min xð Þ
max xð Þ � min xð Þ (3)

Stressors and interaction effects were determined through a stepwise
backwards selection for the multiplicative model (Murtaugh, 2009).
From the full model including the six stressors and all first order interac-
tion effects, variables were dropped out and added back in to obtain the
most parsimonious model with the lowest Bayesian Information Criteria
(BIC) score (Schwarz, 1978). Additive models were then built using the
same variables, but without multiplicative terms. Model performance
was compared among and between species and additive/multiplicative
models, using the amount of variance explained by the model and the
adjusted R2. Adjusted R2 is a measure of model performance that reflects
the variance explained by the model and accounts for the addition of
more terms in the model, thereby enabling a comparison between addi-
tive and multiplicative models per species. The absolute and relative
change in adjusted R2 value (Δ adj. R2) between additive andmultiplica-
tive models was used to assess improvement in model performance per
species. All analyses were conducted in R statistical software using the
‘stats’ package (R Core Team, 2020).

2.5. Interactive effects and uncertainty estimates

The model outputs were used to identify the presence of additive and
multiplicative effects between stressor pairs and study the prevalence and
nature of interactive effects. First, an assessment of additive, synergistic,
or antagonistic effects was conducted using the estimates and direction of
model coefficients, as per Thrush et al. (2008b). Additive effects were iden-
tifiedwhen the effect of a stressorwas independent fromother stressors and
was not part of any multiplicative term in the model. Additive models by
default only include additive effects, whereas the multiplicative models
could include both additive and multiplicative effects depending on the
stressor. Formultiplicative effects a distinctionwasmade between synergis-
tic and antagonistic effects based on the directions and estimates of coeffi-
cients for the main effects and the multiplicative terms of stressor pairs.
Synergistic effects represent situations where the combined stressor effect
causes a stronger increase or decrease in abundance compared to the addi-
tive effect of the two stressors, whereas antagonistic effects represent situa-
tions where the combined effect is dampened. Main effects can either act in
the same or in opposing directions. If both main effects act in the same
direction, synergistic effects were considered when the multiplicative
term acted in the same direction as both main effects (see Eq. (2)) whereas
antagonistic effects are considered when the multiplicative term acted in
the opposite direction:

y ¼ aþ b1x1 þ b2x2 � b3x1x2 (4)

When main effects acted in opposing directions, synergistic and antagonis-
tic effects were identified from the magnitude of the estimated coefficients
for main and multiplicative terms. In this case, synergistic effects were con-
sidered if the coefficient for themultiplicative termwas larger than the sum

http://cliflo.niwa.co.nz


Table 3
Model performance overview per species for models with additive effects between stressors (Additive) and those with additive or multiplicative effects between stressors
(Multiplicative). Two metrics for model performance were used: the amount of variance explained by the model, and adjusted R2 that accounts for the number of terms
in the model. The difference in adjusted R2 value for additive and interactive models (Δ adj.R2) reflects the improvement of model performance by adding multiplicative
interactive terms to the model. The number of interactive terms (N. interactions) retained in the multiplicative models are given, with detailed model summaries available
in Supplementary Materials, Table S1.

Species Model Variance explained (%) Adjusted R2 Absolute Δ adj.R2 Relative Δ adj.R2 (%) N interactions

Austrovenus Additive 13.0 0.12
Multiplicative 15.5 0.15 0.03 25.0 2

Macomona Additive 15.1 0.15
Multiplicative 17.7 0.17 0.02 13.3 1

Heteromastus Additive 16.9 0.16
Multiplicative 21.9 0.21 0.05 31.3 3

Scoloplos Additive 10.3 0.10
Multiplicative 15.6 0.14 0.04 40.0 5

Magelona Additive 32.0 0.32
Multiplicative 34.8 0.34 0.02 6.3 3

Aonides Additive 11.0 0.11
Multiplicative 20.1 0.19 0.08 72.7 4

Oligochaeta Additive 26.1 0.26
Multiplicative 31.6 0.31 0.05 19.2 5

Austrohelice Additive 13.6 0.13
Multiplicative 18.5 0.17 0.04 30.1 6

Table. 4
Overview of terms retained in themultiplicativemodel and the interpretation of the
interaction as either additive, synergistic or antagonistic from the model coefficient
estimates.

Additive Synergistic Antagonistic Total

maxSST
Exposure 2 2
SOI 1 1
Mud 1 1
OM
N-load 1 1
maxSST Mud 4 4
maxSST SOI 3 3
maxSST Exposure 1 1 2
maxSST OM 1 1 2
maxSST N-load 1 1
Exposure Mud 2 2
Exposure SOI 1 2 3
Exposure OM 2 2
Exposure N-load 1 1 2
SOI Mud 1 1
SOI OM 1 1 2
SOI N-load 1 1
Mud OM 1 1 2
Mud N-load 1 1
OM N-load 1 1
Total 5 15 14 34
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of themain effects (Eq. (5)) (e.g. in y=a+b1x1 - b2x2 - b3x1x2, if b3> b1+
b2), and antagonistic effects when the coefficient estimate was smaller than
the main effects (Eq. (6)).

y ¼ aþ b1x1 � b2x2 � b3x1x2, if b3>b1 þ b2 (5)

y ¼ aþ b1x1 � b2x2 � b3x1x2, if b3 < b1 þ b2 (6)

Multiple stressor effects were visualised to gain a better understanding
of the shape and effect of multiplicative effects compared to additive effects
of the same stressor pair. To this end, 3-Dimensional Partial Dependence
Plots (3D-PDP) were created by predicting the abundance of a species
from both the additive and multiplicative model for the combined stressor
spacewhilst keeping all other stressors in themodel at theirmean. For 2500
combinations of a significant stressor pair, predictions were made from the
minimum to maximum stressor values in the dataset on the normalised
scale and back transformed to the original stressor values (see Table 2).
Shapes and gradients from the 3D-PDP for the additive model were then
compared to the multiplicative model to determine how our understanding
of the stressor effect changes by adding multiplicative terms to the model.
The standard errors (SE), a measure of precision in mean estimates, were
displayed as an upper confidence band in the 3D-PDP (overlaid in grey).
Finally, these SE were used to reflect uncertainty from model predictions
in contour plots as the difference between the mean and upper bound for
combinations of two stressors in the 3D-PDP. A narrow or wide confidence
band in the 3D-PDP match low and high SE in the error contours, respec-
tively. Contour plots display data availability along the single stressor
gradients and in the combined stressor space to determine how data avail-
ability impacts model uncertainty for different stressor pairs. All 3D figures
were created inR statistical software (R Core Team, 2020), using the ‘plotly’
(Sievert et al., 2021) package.

3. Results

3.1. Model overview

Model performance was expressed as variance explained (between 10.3
and 34.8 %) and adjusted R2 (ranged from 0.10 to 0.34) for additive and
multiplicative models (Table 3). For all species, the adjusted R2 increased
with the addition of first-order multiplicative interactive effects between
stressors to the models, compared to those with additive effects of the
same stressors alone (paired t-test, t = 5.9545, p < 0.001). Adjusted R2

increased by 0.02 to 0.08 (Absolute Δ adj.R2) which was a 6 to 73% relative
increase in model performance (Relative Δ adj.R2, Table 3). Models for
5

Magelona had the highest amount of variance explained in the additive and
multiplicative models but had the smallest increase in model performance.
On the other hand, model performance was most improved for Aonides sp.,
where 4 multiplicative effects between stressors increased relative perfor-
mance by 73 % compared to the additive model (Tables 3, S1). The number
of first order multiplicative interactions included in the multiplicative
models ranged from 1 (e.g. Macomona liliana), to 6 (Austrohelice crassa)
(Table 3). For detailed model summaries, see Supplementary Materials,
Table S1.

3.2. Interactive effects

In the multiplicative models, a total of 34 significant stressors effects
were observed across the eight species, of which 15were synergistic, 14 an-
tagonistic, and 5 additive based on coefficient estimates from the models
(Table 4, Table S1). For multiplicative interactive effects (synergistic or
antagonistic), at least one climate stressor (maxSST, SOI, and Exposure)
was involved in 57 % of multiplicative interactions, whereas local stressors
(Mud, OM, N-load) were included in 43 %. MaxSST was found to be the
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most common interactive stressor for this dataset and was included in 12
multiplicative terms of which 7 were found to be synergistic. MaxSST no-
ticeably interacted with Mud as the most frequent stressor pair (4 times),
with synergistic interactions found in all instances (Table 4). MaxSST was
further found to cause consistent antagonistic effects when interacting
with SOI, another climate related stressor (Table 4). Sediment mud content
was found to be themost dominant stressor causing synergistic effects, with
90 % of interactions identified as synergistic of which 78 % were found to
be with climate related stressors (maxSST, SOI, or Exposure) (Table 4). SOI
was most often causing antagonistic effects (70 % of interactions), of which
72 % were antagonistic interactions with other climate stressors (maxSST
or Exposure) (Table 4).

Significant multiplicative effects between stressor pairs were visualised
and assessed, with examples forAustrovenus stutchburyi andMagelona dakini
used to highlight themain effects observed (Figs. 1 and 2), which were con-
sistent with shapes and effect for the remaining species (Supplementary
Materials, Figs. S2–7). For Austrovenus significant multiplicative interac-
tions were found for Mud:maxSST and Exposure:N-load, which were both
Fig. 1.Three-Dimensional Partial Dependence Plots (3D-PDP) for stressor pairs with sign
combination of the stressor pair, abundance is predicted using the additive or multiplica
theirmean.Upper confidence bound (grey overlaid) reflect the Standard Error (SE).Mult
D) interactions. Note colour scales continuously for all stressor pairs, whereas z-axes are
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identified as synergistic from the coefficient-based assessment (Table 4).
In both cases, 3D-PDPs confirm the synergistic nature of the interactive ef-
fect, with a steeper and more pronounced drop in abundance when both
stressors increased, reflecting a ‘bowl’ shaped effect (Fig. 1). Compared
to the 3D-PDP from the additive model, both stressor pairs showed a
clear pattern with high predicted abundances in the multiplicative model
when either (or both) stressors were low. For Mud:maxSST, this is clearly
characterised by the high (red) edges along the low stressor gradients
(Fig. 1B) compared to the drop along both low stressor edges in the additive
model (Fig. 1A). For the Exposure:N-load interaction, the dropwith increas-
ingN-load along the low exposure edge is reduced compared to the additive
model, but this effect is weaker along the low N-load gradient with an
increase in exposure (Fig. 1C & D).

For Magelona, multiplicative effects between stressors included combi-
nations of Exposure with local stressors (Mud, OM and N-load). 3D-PDP
showed clear peaks in abundance in the multiplicative model whereas the
additive model predominantly showed the effect of exposure, covering
the general trend that abundances were highest in exposed sites (Fig. 2).
ificant interactive terms inmultiplicativemodels forAustrovenus stutchburyi. For each
tive model (left and right column respectively), whilst keeping all other variables at
iplicative terms in themodel includeMud:maxSST (A&B) and Exposure:N-load (C&
scaled for each stressor pair.



Fig. 2. Three-Dimensional Partial Dependence Plots (3D-PDP) for stressor pairs with significant interactive terms in multiplicative models for Magelona dakini. For each
combination of the stressor pair, abundance is predicted using the additive or multiplicative model (left and right column respectively), whilst keeping all other variables
at their mean. Upper confidence bound (grey overlaid) reflect the Standard Error (SE). Multiplicative terms in the model include Mud:Exposure (A & B), Exposure:OM (C
& D), and Exposure:N-load (E & F) interaction. Note colour scales continuously for all stressor pairs, whereas z-axes are scaled for each stressor pair.

V. Rullens et al. Science of the Total Environment 842 (2022) 156877

7



V. Rullens et al. Science of the Total Environment 842 (2022) 156877
Coefficient-based assessments identified the Mud:Exposure interaction
as synergistic, whereas the Exposure:OM and Exposure:Nload were charac-
terised as antagonistic (Table 4). 3D-PDP illustrated that the nature of these
interactions depends on the position of the (primary) peak. For synergistic
effects a peak was found in the high-high corner (Fig. 2B), and antagonistic
effects in the low-high corner (Fig. 2D& F). 3D-PDP further showed that the
magnitude of stressor impacts differed substantially for the three stressor
pairs with the biggest change in abundance predicted for theMud:Exposure
interaction, as shown by the difference in colour gradient in Fig. 2. Fur-
thermore, both Exposure:OM and Exposure:N-load interactions showed a
‘saddle-shaped’ effect, with a small secondary peak and a directionality
shift from an initial positive effect with increasing stressors shifting to a
negative effect on abundance past the ‘saddle’ (Fig. 2D & F). Response sur-
faces showed lower predicted abundances and steeper gradients of change
where both stressors were high than expected from the additive model, and
contradicted the antagonistic classification (Fig. 2C–F). Directionality shifts
were found for other species, and can occur with a large secondary peak
(e.g. Macomona or Aonides in Figs. S2 and S5).

3.3. Uncertainty

Standard errors from model predictions reflected modelled uncertainty
from data availability for multiplicative models compared to additive ef-
fects of the same stressor pair. For Austrovenus, Mud:maxSST had SE up to
0.3 or 0.6 in the additive and multiplicative model respectively (Fig. 3A
Fig. 3. Standard Error predictions for significant stressor combinations from additive
standard error with data availability displayed as rugs along the x and y axis for ea
interactions include effects between Mud:maxSST (A & B) and Exposure:N-load (C & D
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& B). SE were higher for the Exposure:N-load interaction, with SE ranging
up to 0.5 in the additive and 1.6 in the multiplicative model which showed
a strong increasing trend with increases in both stressors (Fig. 3C& D). For
Magelona, uncertainty in all additive panels were low with SE up to 0.2 for
Exposure with Mud and N-load (Fig. 4A & E), and 0.3 for Exposure:OM
(Fig. 4C). Multiplicative models had higher SE, with highest observed
values for Exposure:OM at a maximum of 0.8 when both OM and Exposure
were high (Fig. 4D). For both Austrovenus and Magelona, an interactive ef-
fect between Exposure and N-load was observed, for which SE contours
were similar in shape, but the magnitude of the SE varied between species
with a much higher uncertainty for Austrovenus for the same stressor pair
(Figs. 3D & 4F).

In general, additivemodels had lower SE than their multiplicative coun-
terpart for all species and reflect the data availability per stressor, which are
shown as rug plots along the x and y axis (Figs. 3 & 4, and Figs. S8–13). SE
was generally low in additive models when both stressors were low,
reflecting the data availability for low stress environments. SE increased
when data became sparser along either axis, as was most noticeable for Ex-
posure:N-load for Austrovenus (Fig. 3C). SE in the multiplicative models
captured the data availability for stressor combinations instead of data
availability for individual stressors. This always resulted in higher SE and
clearly reflected the distribution of data points in the multi-stressor space
of the uncertainty figures (Figs. 3 & 4, Figs. S8–13). Overall, N-load and
Exposure were the stressors with highest uncertainty, which was found in
both the SE contours as well as the Error estimates in the model summary
and multiplicative models for Austrovenus stutchburyi. Figure contours capture the
ch of the individual stressors, and dots in the combined stressor space. Stressor
).



Fig. 4. Standard Error predictions for significant stressor combinations from additive and multiplicative models for Magelona dakini. Figure contours capture the standard
error with data availability displayed as rugs along the x and y axis for each of the individual stressors, and dots in the combined stressor space. Stressor interactions
include effects between Mud:OM (A & B), Exposure:maxSST (C & D), and Exposure:SOI (E & F).
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(Table S1). SOI on the other handwas associatedwith lowest overall uncer-
tainty in SE contour plots and model Error estimates, as data availability
generally covered the combined stressor space well.

4. Discussion

In this study, regression models were applied to compare how the inclu-
sion of multiplicative interaction terms, as opposed to simple additive effects,
impacted the assessment of species responses to multiple stressors and how
this altered our understanding of the associated risk and uncertainty. Firstly,
9

species models accounting for multiplicative stressor interactions outper-
formed additive models in all examples and showed that non-additive
stressor effects dominated. Models that analyse multiple stressors using
ecosystem data can assess real-world complexities, and identify consistencies
in stressor interactions. Most noticeably, proxies for climate stressors (e.g.
sea-surface temperature) were frequently included in multiplicative terms,
often creating a synergistic effect in combinationwith local stressors (e.g. sed-
imentation). Secondly, 3D-PDP provide insight in the direction, magnitude
and gradients of change, and were critically important to identify directional
shifts where the nature of the interaction changed along increasing stressor
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gradients. Coefficient based assessments, which simply provide one effect
term for a stressor pair, were not able to capture the complexity observed
in 3D-PDP and are at risk of mis-identifying interaction types. Finally, despite
this increased understanding and reduced risk from missed or mis-identified
stressor effects, including multiplicative effects in models did not lead to
decreased uncertainty in model parameters, but rather better captured the
true uncertainty generated by data availability.

4.1. Multiple stressors in a risk and uncertainty framework

In situations where the consequences of a threat are unknown or not
well understood, uncertainty arises that must be identified and evaluated
in risk assessments (Stelzenmüller et al., 2020). Through modelling species
responses to stress, insight was gained from real-world patterns tominimise
these unknown consequences. Models with higher explanatory power can
reduce epistemic uncertainty, originating from an imperfect understanding
of the system, and provide new insights to bettermanage stressors. By com-
paring models with additive and multiplicative stressor effects, we identi-
fied how much our understanding increased (i.e. increase in explanatory
power) by accounting for multiplicative stressor interactions. In the com-
parison between additive and multiplicative models, the latter always
resulted in higher explanatory power, ranging from 2.5 to 9.1 % increase
in variance explained. However, the relationships between stressors and
species abundance overall remained weak (between 10.3 and 34.8 % vari-
ance explained), which is in linewithR2 values from previous soft sediment
stressor studies (e.g. Thrush et al., 2008b; Ellis et al., 2017a). The use of
proxies for stressors (such as modelled data), most of which are integrative
over space/time, may contribute to unexplained variability in the models.
Furthermore, ontological uncertainty (i.e. natural variability) is high due
to the ecological complexity in estuarine systems and the many drivers
that influence the distribution and abundances of species besides their
response to stress (Soberón and Peterson, 2005). In ecology, the importance
of weak relationships is however recognised (Kneib, 1991; McCann, 2000;
Thrush et al., 2008b), where studies that explain 10 % or more of the vari-
ance in empirical and modelling studies are recognised as ecologically
meaningful. However, it is worth noting that this means much variance
remains unexplained, and uncertainty persists.

In this study, non-additive effects dominated (Table 4). Especially for
synergistic effects, a small change in a stressor can cause a disproportionally
large effect and should result inmore conservativemanagement limits. Risk
can arise when the actual consequences of (multiple) stressors deviate from
what was previously expected (ISO, 2009). Past management criteria for
acceptable stressor levels were often set for single stressors, like setting
catch quotas to manage fisheries (Copes, 2019) or nutrient limits to miti-
gate eutrophication (Schiel and Howard-Williams, 2015). Newly identified
stressor interactions are critical as they will predict altered responses to
stress, and previously set thresholds may no longer work. For example, a
synergistic effect between Mud and maxSST was found in 50 % of the spe-
cies models where 3D-PDP showed steeper changes in species abundance
compared to additive predictions. MaxSST was used as a proxy for increas-
ing ocean temperatures (Sutton and Bowen, 2019), which impacts environ-
ments and communities globally (e.g. Sorte et al., 2010; Rogers-Bennett
and Catton, 2019; Strydom et al., 2020). Sedimentation, causing increased
mud content, was found to be a dominant local stressor that caused syner-
gistic effects in 90%of cases and is known to be an important driver of com-
munities along estuarine gradients (e.g. Ysebaert et al., 2002; Thrush et al.,
2003; Gimenez et al., 2005; Robertson et al., 2015). By identifying priority
stressors, management practices can be updated, and in the short-term,
focussing on local stressors can maximize effectiveness of management
actions (Brown et al., 2013; Gurney et al., 2013; Weijerman et al., 2018).
In the long-term however, the bigger issues, like climate change, need to
be tackled as the frequency with which synergistic effects from climate
stressors were found indicates they pose a high risk. The precautionary
principle provides a robust strategy when dealing with deep uncertainty
in stressor interactions to avoid ecological surprises (Côté et al., 2016;
Gladstone-Gallagher et al., 2019a).
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There is an ongoing debate about the classification and (mis-)identi-
fication of interaction types, and in particular sub-types (e.g. Brook
et al., 2008; Piggott et al., 2015; Côté et al., 2016). A meta-analysis by
Piggott et al. (2015) found that depending on the classification, differ-
ent interaction types could be identified from the same datasets. This
is problematic for management and consistency is needed. Previous
studies using regression models distinguish additive, antagonistic, and
synergistic effects from model coefficient estimates (but see Feld et al.,
2016). To aid transparency and consistency in categorising stressor
interactions, visualisation of stressor effects through 3D-PDP reduces
the risk of mis-interpretation by showing the direction, magnitude,
and gradients of change (Feld et al., 2016). The categorisation of an-
tagonistic and synergistic effects from model coefficient estimates
did not always match the complexity of patterns shown in the plots,
which also showed the magnitude of the interaction changing along
the stressor's gradient. Moreover, even when the same interaction type
was identified, the shapes and gradients of change in response surfaces
could differ, as exemplified by the synergistic effects for Austrovenus
(‘bowl’ shaped) and Magelona (‘peak’ shaped). Gradients of change can
identify tolerance to one or multiple stressors and a transition zone
where steep and pronounced drops in abundance occur (e.g. yellow
band for Austrovenus, Fig. 1) and tolerance is lost.

More importantly, some plots showed ‘saddle’ shapes, created by a
change in the nature (antagonistic/synergistic/additive) of the interac-
tion along the stressor gradients. For Magelona, where most stressors
interactions were originally classified as ‘antagonistic’ effects (i.e. the
combined effect of two stressors is smaller than was predicted addi-
tively), a directionality shift occurred for some stressor pairs from a
positive effect with increasing stressors to a negative effect. The 3D-
PDPs clearly showed the complex pattern with limited conditions for
abundance when both stressors are low, a preferred range of conditions
(which depends on the sensitivity to the other stressor, e.g. Hewitt et al.,
2016), and a pronounced drop in abundance past these conditions
(synergistic). 3D-surfaces are therefore critically important to iden-
tify directional shifts, as the complexity cannot be readily captured
from coefficient-based assessments which simply provide one effect
term calculated across the whole range of stressor gradients (or com-
binations), and require additional attention in risk-assessments and
management.

This study focussed on pairwise stressor effects for selected single spe-
cies responses. The visualisation of response surfaces in 3D-PDP provides
a helpful asset when communicating complex stressor effects to managers
and decision makers. However, they are limited to display two stressor
effects simultaneously, whilst models contained more than two stressors
and interactions between three or more stressors are possible. This is a
particular limitation for certain stressor types, such as chemical pollutants,
which often include a vast number of substances. Visualising the effect of
any additional stressors would therefore require other techniques, like
multidimensional scaling plots (e.g. from Principal Component Analysis
or other ordination approaches). Although more complex effects from any
number of stressors can be captured through dimensionality reduction or
composite variables (e.g. Esselman et al., 2011; Clark et al., 2020), detailed
information on changes along gradients is lost and it is more difficult to
define stressor limits for management application. Furthermore, while
selected single species models were used to identified consistencies in
priority stressors, decision makers face the fact that they are not managing
for a single species, but for an ecosystem. Novel methods exist that are
better equipped to deal with multivariate (e.g. community) data, including
Generalized Dissimilarity Matrices (GDM; Ferrier et al., 2002), Gradient
Forests (GF; Ellis et al., 2012), and Joint Species Distribution Models
(JSDM; Ovaskainen et al., 2017), but these are less intuitive in how stressor
interactions are modelled and identified. The high-priority stressor interac-
tions identified from single species models could be applied in JSDMs
that account for environmental and biological variables driving commu-
nities through hierarchical modelling of species communities (HMSC;
Ovaskainen and Soininen, 2011).
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4.2. Uncertainty and data availability

Uncertainty for cumulative stressor models is rarely considered in the
literature, despite a transparent treatment of uncertainty being critical to
inform decision making (Stelzenmüller et al., 2018; Marcot, 2020). Uncer-
tainty is a multi-dimensional concept, and the origin of uncertainty relates
to the nature (epistemic vs. ontological), level, and location within the
model (Walker et al., 2003). The impact of data availability on statistical
uncertainty estimates was considered, acknowledging that there are
other sources of uncertainty that were beyond the scope of this study
(Stelzenmüller et al., 2020). Interestingly, for models including multiplica-
tive stressor interactions, the decrease in epistemic uncertainty from
increased explanatory power (as discussed above) did not translate to a
decrease in model parameter uncertainty. On the contrary, the prediction
errors were larger (as compared to the additive model uncertainty con-
tours) and showed clearly the areas that were uncertain when data in the
combined stressor space was lacking. Additive models, which are also
predicting multiple stressor effects, were unable to capture this uncertainty
and only picked up the uncertainty along individual stressor gradients.
When models are derived from limited data for stressor combinations
they will produce highly uncertain outputs, similar to extrapolations into
unsampled space (Thuiller et al., 2004; Fitzpatrick and Hargrove, 2009;
Zurell et al., 2012). Although the uncertainty measure was higher in multi-
plicativemodels, it's a more genuine reflection of the uncertainty that exists
from data availability and is more informative for risk management

Transparent communication aboutmodel uncertainty therefore requires
not only a direct measure of uncertainty itself, but also an understanding of
the origin and the accurate representation of the type of uncertainty. Error
contour plots enable communication and simultaneously provides feedback
for environmental monitoring programs to ensure sampling efforts are con-
ducted across the combined stressor space and highlights areas of insuffi-
cient data. Acknowledging that some combinations of stressors may not
naturally occur in real-world systems (Williams and Jackson, 2007). Data
limitations mostly occurred where both stressors where high, and better
data coverwill contribute tomore robustmodelling and potentially a reduc-
tion of uncertainty of cumulative stressor effects in the future. Alternatively,
experts can be consulted to validate underlying (ecological) mechanisms to
increase confidence in the predicted response (Singh et al., 2017). Overall,
acknowledging uncertainty inmanagement is critical, and together with 3D
plots showing steep gradients of change, the higher uncertainty in model
predictions in multiplicative models urges more conservative limits to be
set for management that account for risk and uncertainty in multiple
stressor effects.

5. Conclusion

There is an increasing awareness of the many complex cumulative
effects that occur betweenmultiple stressors, influencing the ways weman-
age marine ecosystems and the species therein. The risks and uncertainties
that are associated with the analysis of stressor impacts receives little atten-
tion in the scientific literature, but a transparent treatment of risk and un-
certainty is essential for informed decision making. Multiplicative stressor
interactions were found to have an important effect when predicting the
abundance of estuarine macrofauna species, and outperformed additive
models for all species of interest. Here we argue that applying multiplica-
tive models, visualising stressor interactions, and explicitly acknowledging
the model uncertainties from data availability, provides a meaningful way
to improve transparency and communication of risk and uncertainty from
multiple stressor effects. Visualising the predicted response in the combined
stressor space can reduce the risk of mis-identifying interaction types by
revealing the direction, magnitude and gradients of change for important
stressor pairs. It thereby provides insight in priority stressors, the toler-
ance of a species to stress, and appropriate limit setting for management
that takes risk and uncertainty into account. Similarly, visualising model
uncertainty demonstrated that although error terms were higher for multi-
plicativemodels, theywere amore appropriate reflection of the uncertainty
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originating from data availability. Although these models were applied to
estuarine macrofauna, the need to implement multiple stressor research
into risk and uncertainty frameworks extends to other ecosystems and the
approach can be adopted in regressionmodels in other environments to im-
prove transparency and communication about cumulative stressor effects.
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